If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+72t-2.25=0
a = 16; b = 72; c = -2.25;
Δ = b2-4ac
Δ = 722-4·16·(-2.25)
Δ = 5328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5328}=\sqrt{144*37}=\sqrt{144}*\sqrt{37}=12\sqrt{37}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-12\sqrt{37}}{2*16}=\frac{-72-12\sqrt{37}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+12\sqrt{37}}{2*16}=\frac{-72+12\sqrt{37}}{32} $
| 3000-25x=3000-15x | | 10=5x-21 | | 4-1/6(x)=10/3 | | 3y+6/4y=-2 | | 3y+6/4y=-3 | | 6-1/6(x)=16/3 | | (2x-20)+112=180 | | (6x-13)+127=180 | | (9x-12)=(9x-12) | | (x-6)+60=180 | | (x-6)=60 | | (6x+10)+(7x+9)=180 | | (18+8x)=(7x+30) | | 248-x=48 | | 86=-w+294 | | -x+146=281 | | g(5)=2^5+1 | | 63=4u-6 | | 1x50=25x | | -14x+1=10x-19 | | 1/2x-2=1/6x+2 | | -3/4=-1/3+1/6c | | 1/x+2+4=13/x-2 | | 4n-3=5n+1 | | 3(x-1)=2x=3+3x | | 109=-x=258 | | 21/100=x/360 | | -69-p=8)=-6p+12 | | 2=1.092^x | | (11x-9)=(7x-9) | | 3x3+9x2-3x-9=0 | | 15x+34=-5x-64 |